FACULTY RESEARCH EDITION

of

The Savannah State College Bulletin

Published by

The Savannah State College

Volume 25, No. 2 Savannah, Georgia December, 1971

PRINCE A. JACKSON, JR., PRESIDENT

Editorial Committee

JOAN L. GORDON WILLIE G. TUCKER
S. M. JULIE MAGGIONI HANES WALTON

A. J. MCELMORE, Chairman

Articles are presented on the authority of their writers, and neither the Editorial Committee nor Savannah State College assumes responsibility for the views expressed by contributors.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Effects of Photoperiod, Temperature, and Thyroxin on the Transformation of Laval Ambystoma annulatum</td>
<td>5</td>
</tr>
<tr>
<td>Patrick H. Ireland</td>
<td></td>
</tr>
<tr>
<td>Characterization in the Children's Books of A. A. Milne</td>
<td>13</td>
</tr>
<tr>
<td>Marie W. Nelson</td>
<td></td>
</tr>
<tr>
<td>The Negro in the Prohibition Party</td>
<td>23</td>
</tr>
<tr>
<td>A Case Study of the Tennessee Prohibition Party</td>
<td></td>
</tr>
<tr>
<td>Hanes Walton, Jr.</td>
<td></td>
</tr>
<tr>
<td>An Inquiry Into Burma's Policy of Neutralism</td>
<td>35</td>
</tr>
<tr>
<td>Hanes Walton, Jr.</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Nuclear Experiments with $^{210}{	ext{pb}}-^{210}{	ext{Bi}}$ Equilibrium Mixture</td>
<td>53</td>
</tr>
<tr>
<td>M. P. Menon</td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate Nuclear Experiments with 210Pb-210Bi Equilibrium Mixture

M. P. Menon
Department of Chemistry, Savannah State College
Savannah, Georgia

It has been recognized by many teachers and scientists that nuclear education be made a part of undergraduate chemistry curriculum (1). Although most of the larger colleges and universities have been offering at least one undergraduate course in nuclear science for several years undergraduate students of smaller colleges are not often exposed to radioisotope techniques. In a recently introduced “Radioisotope Technology” course at this college we have developed several experiments with 210Pb-210Bi equilibrium mixture which may be useful for similar courses in undergraduate curriculum.

Several laboratory experiments have been suggested by various authors, in the past, for an undergraduate course in radiochemistry (2-6). The 137Ba equilibrium mixture suggested for demonstration of parent-daughter equilibrium studies and half-life determination (2,3) is not very convenient due to the short half-life of 137Ba daughter. The half-life determination of 234Th (5) is based on the measurement of the daughter, 234Pa, activity after it reached equilibrium with its parent and it usually takes about two months to finish the experiment. The 210Pb-210Bi equilibrium mixture offers a better choice for the radioactive equilibrium studies and half-life determination provided a rapid and convenient method for the radio-chemical separation of 210Bi is available. The dithiazone method for the separation of bismuth(7) is tedious and more time consuming. An ion-exchange batch method has been developed in our laboratory for a rapid separation of 210Bi from its parent. The isolated 210Bi which has a convenient half-life ($T_{1/2} = 5d$) may be used for half-life determination. The long-lived 210Pb component stripped out of the ion-exchange by ammonium citrate solution may be used to study the growth of the daughter reaching secular equilibrium with the parent. It is clear from the decay scheme of 210Pb shown in Fig. 1 that out of the three radioisotopes resulting from the decay of 210Pb only the beta activity of 210Bi can be detected by a G. M. counter. Beta rays from 210Pb are too soft to be detected by an end-window G. M. counter. This permits the radiochemical measurement of the distribution coefficient of Bi(III) between the ion-exchange resin and the aqueous solution. The 210Pb-210Bi mixture was also used as an ideal sample for the determination of E_{max} of beta radiation from 210Bi by absorption measurements.
EXPERIMENT

a) Purification of Ion-exchange Resin:

Dowex 50W-x4 cation exchange resin, 50-100 mesh, was purified as follows: About 20 g of the resin was washed several times with deionized water and decanted. It was then washed three times with 10% solution of ammonium citrate (pH ~ 3.5). The resin was then stirred with 3 M HCl to convert the resin into the H+ form and the mixture decanted. It was finally washed with water several times until the washings did not give a positive test for chloride with silver nitrate solution. The resin was dried in the air and stored in a bottle.

b) Procedure for the Separation of ^{210}Bi:

Two milliliters (~ luC) of $^{210}\text{Pb}-^{210}\text{Bi}$ mixture in very dilute nitric acid solution (pH ~ 4) was diluted to 6 ml with water in a centrifuge tube. Half a gram of the purified and dry resin was added to the solution and the mixture was stirred for two minutes. It was centrifuged and the supernatent was transferred to another test tube. Half a milliliter of this solution was dried on a flat planchet, mounted on a cardboard and counted in a G. M. counter. This sample, labelled ^{210}Bi, was used for the determination of the half-life of ^{210}Bi.

The residual resin in the centrifuge tube was washed 3 times with water to remove any unabsorbed activity in the mixture. It was then treated with 5.5 ml of 10% ammonium citrate solution whose pH was adjusted to 5.8 with ammonia and the total volume made up to 6.5 ml, same as before, including the volume of the resin (0.5 ml). The mixture was stirred for two minutes and then centrifuged. Half a milliliter of the supernatent was dried on a planchet, mounted on a cardboard and this ^{210}Pb sample counted in the same G. M. counter under identical geometry. The above experiment was repeated three times. The data obtained from these experiments were also used to calculate the distribution coefficient of Bi(III) between the ion-exchange resin and the aqueous solution.

c) Measurement of E_{max} of Beta Radiation from ^{210}Bi:

Two milliliters (~ luC) of the same tracer solution ($^{210}\text{Pb}-^{210}\text{Bi}$ mixture) was diluted to 6.5 ml. Half a milliliter of the diluted solution was dried on a planchet, mounted on a cardboard and counted under the same geometry for several days to show the equilibrium nature of the tracer solution. The same sample was used, under different geometry, for absorption measurements with aluminum absorbers. A standard source of 3.75y ^{204}Tl, a monoenergetic beta-emitter with $E_{\text{max}} = 0.765$ Mev, was used for the analysis of absorption data by Feather’s method(8).

RESULTS AND DISCUSSIONS

The growth and decay curves of ^{210}Bi obtained from the counting data of typical ^{210}Bi and ^{210}Pb samples along with the equilibrium activity of $^{210}\text{Pb}-^{210}\text{Bi}$ as a function of time are
presented in Fig. 2. The decay curve “a” shows that there is no contamination from 210Pb from which it may be inferred that the lead ion is completely absorbed on the ion-exchange resin. The half-life of 210Bi obtained from curve “a” is in good agreement with the reported value (5.0d). It is to be pointed out that there is good agreement between the total activity of the 210Pb sample after reaching equilibrium and the equilibrium activity of the tracer sample. However, it is evident from curve “b” that the isolated 210Pb sample also contains a fraction of 210Bi activity initially in equilibrium with 210Pb. Since the beta activity from 210Pb is not counted in the G. M. counter this represents the 210Bi activity absorbed on the ion-exchange resin. Curve “b” may be represented by the equation:

$$A_t = ABi(\text{r}) + (ABi(\text{e}) - ABi(\text{r})) (1-e^{-\lambda \text{Bi} t}) \quad \text{(1)}$$

Where A_t is the total activity at any time t, $ABi(\text{r})$ the activity of 210Bi absorbed on the column, $ABi(\text{e})$ the total equilibrium activity of 210Bi in the 210Pb sample, λ_{Bi} is the decay constant of 210Bi. The distribution coefficient, K_d for Bi was calculated from the following relation(9):

$$K_d = \frac{\text{Amt. of metal per g of resin}}{\text{Amt. of metal per ml of solution}} = \frac{A^* \text{ Bi (r)} V}{A^* \text{ Bi(a)} m} \quad \text{(2)}$$

where $ABi(\text{r})$ is the activity absorbed in “m” g of resin, $ABi(\text{a})$ is that in V ml of the solution. The average value of K_d obtained from three experiments is 12.9 ± 2.0.

Fig. 3 shows the absorption curves of the standard source, 204Tl, and of 210Pb-210Bi sample. The range of the beta radiation from 204Tl was calculated from its known energy using the following equation developed by Glendenin(10):

$$R = 0.407 E_{\text{max}}^{1.38} \quad \text{......... (3)}$$

where R is the range in g/cm2 and E_{max} is the maximum energy of beta radiation. The range and energy of beta particles from 210Bi were computed using Glendenin’s modified method of Feather analysis of the beta absorption curve(10). The E_{max} of beta radiation from 210Bi obtained from the analysis was 1.10 mev which is in a good agreement with the reported value of 1.16 Mev.

In summary the 210Pb-210Bi equilibrium mixture was shown to be an ideal source to conduct several experiments in any undergraduate course which deals with radioisotope techniques. Although the yield is about 50% the proposed ion-exchange batch method may be used for a rapid separation of 210Bi from the 210Pb-210Bi equilibrium mixture.
ACKNOWLEDGEMENT

The financial support given by the National Science Foundation to buy the necessary nuclear equipments to start a course in nuclear chemistry and carry out these experiments is gratefully acknowledged. The author is thankful to the students of this course and especially to David Akins for their cooperation for obtaining most of the experimental data.

LITERATURE CITED:

10. Glendenin, L. E., Nucleonics, 2, 12 (1948)
Fig. 1. Decay scheme of ^{210}Pb.
Fig. 2. Growth and decay of ^{210}Bi; (a) Decay curve of ^{210}Bi isolated from the mixture, (b) Growth curve of the daughter, ^{210}Bi, (c) Decay curve of ^{210}Bi by subtraction of growth from equilibrium activity, (d) ^{210}Pb-^{210}Bi equilibrium activity from the ion-exchange as a function of time, (e) Equilibrium activity of the tracer.